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Distributed Multipole Models for Design and Control
of PM Actuators and Sensors
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Abstract—Design and control of multi-degree-of-freedom (DOF)
electromagnetic actuators require a good understanding of the
magnetic fields, and involve real-time calculation of magnetic
forces. This paper presents a method to derive distributed multipole
(DMP) models for characterizing the magnetic field and torque of
permanent magnet (PM) based devices. The DMP method, which
offers magnetic-field solutions in closed form, inherits many ad-
vantages of the dipole model originally conceptualized in the con-
text of physics, but provides an effective means to account for the
shape and magnetization of the physical magnet. Three practical
applications are given to demonstrate the DMP models for design
of PM-based actuators and sensing systems. The magnetic fields
and forces calculated using DMP models have been validated by
comparing against numerical and experimental results which show
excellent agreement.

Index Terms—Actuator, magnetic field, permanent magnet, sen-
sor, spherical motor, torque model.

I. INTRODUCTION

MANY automated processing equipment, machine tools,
mobile vehicles (such as car wheels [1], [2], propellers

for boats, helicopter, or underwater vehicle), and gyroscopes
require orientation control of a rotating shaft. Growing interest
in fuel-cell technology and low-cost electric vehicles has moti-
vated a number of researchers to develop application-oriented
in-wheel or multi-degree-of-freedom (DOF) spherical motors.
Design optimization and real-time control of these motors re-
quire the formulation of its forward and inverse torque models.

Existing techniques for analyzing electromagnetic fields, and
for design and control of a multi-DOF PM-based actuator rely
primarily on three approaches; namely, analytic solutions to
Laplace equation, numerical methods, and lumped-parameter
analyses with some form of magnetic equivalent circuits [3].
The possibility of obtaining an analytic solution is often remote
for devices with complex geometry. Perturbation theory and
linear superposition can, sometimes, render a difficult problem
solvable. However, even if an analytic solution is achievable, it
often results in a series of space harmonics of nonelementary
functions [4], [5], which must be computed if a numeric solution
to the problem is desired. Motivated by the ability of using dig-
ital computers to make repetitious computation, Harrington [6]
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proposed the concept of matrix methods (also known as the
method of moments) as a numerical approach to solve for the
magnetic field. Commonly used in antenna design and magnetic
wave propagation analysis (see for examples, [7] and [8]),
the method of moments (MM) assumes the dipole moments
inside a magnet cancelling each other, thereby reducing the
governing equation to an integral equation of surface charges.
The resulting boundary value problem can then be solved with
surface (volume) discretization using the MM, which provides a
compact matrix formulation. However, computation time tends
to grow due to the need of fully populated matrix inversion and
fine discretization for numerical accuracy and stability. During
the last four decades, several other computational methods for
solving magnetic field problems including finite element (FE),
boundary element, finite difference, and mesh-free methods
have been very well developed. Numerical methods (such
as the FE method) offer a good field prediction for accurate
computation of the magnetic torque [9], [10]. However,
demanding computation limits these numerical methods to
offline calculation. In order to obtain closed-form solutions
for design optimization and motion control of electromagnetic
actuators, real-time computations have largely relied on lumped
parameter approaches that generally yield only first-order
accuracy. These approaches have difficulties in achieving both
accuracy and low computation time simultaneously.

An alternative method is based on the concept of a magnetic
dipole (originally suggested by Fitz Gerlad in 1883) as a tool
to characterize the magnetic potential fields. Two models, 1)
a single dipole or doublet at the origin and 2) two individual
poles with one at each end, have been widely used to analyze
the magnetic field at a sufficiently large distance for applica-
tions [11]–[13] such as electromagnetic wave propagation (an-
tenna dynamics) and geomagnetism (earth polarization). How-
ever, both models generally give a poor approximation when
the length scale of the field is very small because the source
and sink are essentially singular (infinite field density); the er-
rors increase as air gaps become smaller. For reasons including
compact formulation and solutions that depict intuitive magnetic
fields, many researchers (e.g., [14] and [15]) continue to develop
dipole models to analyze actuator designs involving permanent
magnets. Nedelcu et al. [14] used a magnetic dipole to describe
the field of a PM-based device, where each PM is modeled as a
doublet. While the model in [14] provides concise formulae for
calculating the field and energy flow, it has difficulties to obtain
an accurate solution. Visschere [15] later pointed out a num-
ber of mistakes by comparing the dipole approximation in [14]
against an analytical 2-D magnetic field solution of a PM. The
existing single dipole model (or the mathematical theory of a
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doublet) is often studied in the context of physics and is valid
only for needle-like magnets; thus, it has very limited applica-
tions in modern actuator design. This has led us to develop a
new method to derive closed-form solutions for efficient design
and robust control of modern actuators.

The remainder of this paper offers the following:
1) We present the DMP method. Unlike the MM that offers

a numerical procedure, the DMP method provides precise
calculation of magnetic fields in closed form. The sim-
plicity of this method offers an advantage for real-time
applications.

2) We illustrate the procedure of developing a DMP model for
characterizing the magnetic field, and validate it by com-
paring the calculated magnetic fields and forces against
known solutions whenever possible, and/or published nu-
merical simulations and experimental results.

3) Three practical applications of the DMP method are given.
The 1st example demonstrates the design of PM-based
repulsion actuators for noncontact rotation of moving de-
vices at high speed. The 2nd example simulates the tran-
sient response of a spherical motor. The 3rd example illus-
trates the DMP method for real-time orientation sensing
applications.

II. DMP FIELD MODELS IN CLOSED-FORM

For electromechanical actuators involving both permanent
magnets (PMs) and electromagnets (EMs), the Lorenz force
equation is commonly used to calculate the magnetic force ex-
erted on current-carrying conductors

F = −
∮

B × Id� where I = −
∫∫
©J · dS (1a)

where � is the normalized current direction vector. In (1a), the
current density vector J is directly used in the calculation, and
thus, it is not necessary to compute the magnetic flux generated
by the current loop. Thus, the Lorenz force calculation involves
only modeling the B fields of the permanent magnets.

Alternatively, magnetic forces can be calculated using the
Maxwell stress tensor

F =
∮

Ω
ΓdΩ where Γ =

1
µ0

(
B(B · n) − 1

2
B2n

)
(1b)

where Ω is an arbitrary boundary enclosing the body of interest;
n is the normal vector at the material interface. In computing the
force using the surface integration (1b), B is the total field (of all
the PMs and EMs). As will be shown in an illustrative example,
(1b) can be used only when PMs are used for actuation.

The solution to the force equation (1a) or (1b) requires
solving the magnetic field. The method presented here derives
closed-form magnetic-field solutions for design of PM-based
applications that satisfy the following assumptions: the field is
continuous and irrotational; and the medium is homogeneous
and linear without saturation. Historically, ferromagnetic cores
were commonly used in electromagnetic actuators. The widely
available high-coercive rare-earth PMs at low cost have begun
to change that usage, and air-cored electromagnets are now
commonly seen in ironless motors. For this reason, we focus
on examples without any magnetic conducting boundary.

Fig. 1. DMP model of a cylindrical magnet.

However, the DMP method can be extended to account for the
effects of magnetic conducting boundary by incorporating the
image method [16]. The irrotational field ∇× B = 0 enables
us to define a scalar magnetic potential Φ such that the magnetic
field intensity H is given by

H = −∇Φ and B = µ0H (2a,b)

where µ0 is free space permeability. Since the field is contin-
uous ∇ · B = 0, ∇2Φ = 0, the solution to Laplace’s equation
satisfying the field for a pole [17] is given by

Φ =
(−1)j

4πR
m (3)

where m is the strength of the pole; j takes the value 0 or 1
designating that the pole is a source or a sink, respectively; and
R is the distance from the pole to the field point.

Since a single pole does not physically exist alone in a magnet
field, we define a dipole as a pair of source and sink separated
by a distance �̄. An effective method to approximate flux paths
of a PM is to use multiple dipoles to account for the shape of the
physical magnet. For design and control of PM-based devices,
we seek the field solution outside the physical region of the
magnet, particularly near its boundary.

Cylindrical PMs and EMs are commonly used. Some ana-
lytical and experimental results are also available for model
validation. They are used here for clarity to illustrate the DMP
modeling procedure. However, the method can be readily ex-
tended to PMs of customized shape. Fig. 1 shows the DMP
model of a cylindrical PM (radius a, length �, and magnetiza-
tion M = Moez ), where k circular loops (each with radius āj )
of n dipoles are parallel to M. The k loops are uniformly spaced

āj = aj/ (k + 1) at z = ±�̄/2

where j = 0, 1, . . . , k (4)

0 < �̄ < �. (5)

In Fig. 1, Rji+ and Rji− are the distances from the ith source
and sink in the jth loop to any point P (x, y, z), respectively

R2
j i± = (x − āj cos iθ)2 + (y − āj sin iθ)2 + (z ∓ �̄/2)2 .

(6)
For a cylindrical PM, the field is uniform circumferentially,

and thus, mji = mj . In addition, the following constraint is
imposed on n to minimize the field variation in the θ direction:

Max [Φ(θ)] − Mean [Φ(θ)]
Mean [Φ(θ)]

∣∣∣∣
r=a,z=�/2

× 100% ≤ εθ (7)
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where εθ is a specified (positive) error bound.
Since Laplace’s equation is linear, the potential Φ(x, y, z) can

be obtained by summing the individual contributions

Φ =
1
4π

k∑
j=0

mj

nk∑
i=1

(
1

Rji+
− 1

Rji−

)

where

nk =
{

1 if j = 0
n if j �= 0

. (8)

Similarly, the magnetic flux density at P can be found
from (2)

B =
µo

4π

k∑
j=0

mj

nk∑
i=1

(
aRji+

R2
j i+

− aRji−
R2

j i−

)
. (9)

Since ∇ (1/R) = −aR (1/R2) where aR (= R/R)

aRji±
R2

j i±

= −
(x − āj cos iθ)ax+ (y − āj sin iθ)ay+

(
z ± �̄/2

)
az

[(x − āj cos iθ)2 + (y − āj sin iθ)2 +
(
z ± �̄/2

)2 ]3/2
.

The unknowns (k, n, �̄, and mj where j = 0, . . . , k) in the
DMP model are solved by minimizing the error function (10a)
subject to constraints imposed by the magnet geometry and a
limited set of known field solutions (as fitting points):

E =
∫

z

[Φ(z) − ΦA (z)]2 dz (10a)

where ΦA (z) is the analytical solution along M (or the z-axis).
The general expression of ΦA in 3-D space from a magnetic
pole at R′ (x′, y′, z′) to a field point R(x, y, z) is given in [17]

ΦA =
1
4π

∫
V

−∇ · M
|R − R′|dV +

1
4π

∫
S

M · n
|R − R′|dS (10b)

where n is the unit surface normal. The 1st integral in (10b)
is a volume integral over the body volume V , while the 2nd
is a surface integral over the body boundary surface S. The
corresponding magnetic flux density can be found using (2).
For the uniformly magnetized PM shown in Fig. 1, the 1st term
in (10b) is zero and the potential and flux density along the
z-axis can be solved analytically in closed form

ΦA (Z)
Mo�

=
1
4
[(A− − |B−|) − (A+ − |B+ |)] (11)

BA (Z)
µoMo

=
1
2

[
|B+ |
A+

− |B−|
A−

+ c

]
,

where

c =
{

0 if |Z| ≥ 1
2 if |Z| < 1 (12)

Z =
z

�/2
, γ =

a

�/2
, A± =

√
γ2 + B2

±, and |B±| = |Z ± 1| .

For a given specified residual magnetic flux density, we have

B(z = �/2) = BA (z = �/2) = −µo ∇ΦA |z=�/2 (13)

TABLE I
VALUES OF THE PARAMETERS (k = 1, n = 6)

where B is given in (9). Since (10a) accounts for the potential
field along the magnetization axis, the remaining (k × n + 1)
constraints are constructed from (8) and (9) along two other
orthogonal directions. For PM-based actuator applications, the
specified Φ values are evaluated over an appropriate magnet
surface. To avoid the singularity at R = R′, we choose

|R| = lim
ε→0

(
|R′|| point

at surface
+ εR

)
where εR is a small positive number. The procedure for model-
ing a PM is summarized as follows:

Step 1) Compute ΦA and BA analytically along the magne-
tization vector from (11) and (12), respectively.

Step 2) Generate an initial set of spatial grid points (k, n).
Step 3) Formulate (8) and (9) in terms of the unknowns, �̄ and

mji .
Step 4) Find �̄ and mji by minimizing (10a) subject to (13)

and constraints from other known field points with the
aid of (8) or (9). Error computed by (10a) is saved.

Step 5) Check if the condition (7) is met. If no, increase k or n,
and repeat from Step 3. If yes, the optimal parameters
(k, n, �̄, and mji) can be obtained by minimizing
(10a) using Step 4.

III. VALIDATION OF DMP MODELS

To illustrate and validate the DMP model for magnetic force
computation, we model two PMs and denote here as DMP (A)
and DMP (B); both have a unity aspect ratio (or γ = 2a/� = 1)
but different sizes and magnetization.

A. DMP Model of a Permanent Magnet

Using the MATLAB optimization toolbox, the parameters,
k, n, δ,mj , and mo were solved for γ = 1 by minimizing
(10a) subject to constraints (7) where εθ = 0.05%, (8), and
(13). For a PM with constant Mo , the known field points,
Φ = ΦA (0, y, �/2) in (8), can be numerically integrated from
(10b). Mathematically, the field is singular at the surface, the
ΦA values for (10b) and (11) are solved numerically with
|R′| + 10−6 ; no significant difference in results was found when
εR ≤ 10−3 . The DMP model for the PM with unity aspect ratio
is summarized in Table I, where the error is defined as

%Error = 100 ×
∫∞

�/2+10−6 |Φ(z) − ΦA (z)| dz∫∞
�/2+10−6 |ΦA (z)| dz.

The simulated fields using DMP models are compared with
exact solutions in Fig. 2. The effects of k (number of loops) and
n (number of dipoles per loop) are simulated in Fig. 3. Some
observations are summarized as follows:
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Fig. 2. Potential and flux density along Y - and Z -axes (n = 6 and k = 1).
(a) Φ(Z). (b) B(Z ). (c) Φ(Y ). (d) B(Y ).

Fig. 3. Effect of n and k on modeling errors of PM with γ(2a/�) = 1. (a)
Effect of k on corner error (n = 6). (b) Effect of n on variation in θ(k = 1).

1) The normalized potential and density fields, ΦA (Z)/
(Mo�) and BA (Z)/(µoMo), depend on the aspect ra-
tio γ only. This is consistent with (11) and (12),
respectively.

2) Fig. 2 shows that the exact solutions agree well with the
field solutions modeled using only seven dipoles (n = 6
and k = 1).

3) The discrepancy in Fig. 2(d) primarily occurs around the
corner of the PM; it can be reduced by using more loops,
as shown in Fig. 3. Similarly, the variations in θ can be
reduced by increasing the number of dipoles in each of
the loops.

It is worth noting that the DMP method provides the field
solutions in closed form, and does not require mesh generation,
pre-, and postprocessing generally needed in the FE method.

B. Force Computation With DMP Models

We examine the effect of DMP models on the magnetic force
by computing the repulsive force between two identical magnets
(modeled using multiple dipoles) using Maxwell stress tensor
(1b). The computed forces are compared in Fig. 4 against ana-
lytical solutions and published experimental and numerical data

Fig. 4. Repulsion between two PMs as a function of displacement d [19]
(R = L = 6.35 mm, air gap = 0.5 mm, and µ0 M0 = 1.35 T).

Fig. 5. Reorientation and alignment in live-bird transfer system. (a) Setup.
(b) PM fixed on underside of the track. (c) PM on grasper.

in [19]. The comparisons are remarkably close, validating the
DMP model as well as demonstrating the effectiveness of its
closed-form field solution.

IV. EXAMPLE 1: (REPULSION ACTUATORS)

In transferring live products for meat processing, repeti-
tive reorientation and alignment are often required so that the
grasped products face a unique direction for subsequent han-
dling. Fig. 5(a) shows a PM-based mechanism, which uses high
coercive PM as energy-efficient contact-free actuators for prod-
uct orientation. This example applies DMP models to predict the
magnetic fields and forces involved in the orientation control,
which must be achieved smoothly without compromising the
production line speed. The parameters used in this simulation
are based on the live-bird transfer system shown in Fig. 5(a) [20]
so that computed results can be validated experimentally. The
reorientation/alignment mechanism (which cradles a live prod-
uct with a grasper) travels along a high-speed production line.
The actuating system consists of six identical PMs. Four of
these (N1/N2 with an offset Do , and S1/S2) are fixed on
the underside of the track, and the other two (M1/M2) are
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Fig. 6. Schematics illustrating the reorientation/alignment mechanism. (a)
Layout of permanent magnets. (b) Side view of A in Fig. 5(d). (c) Coordinate
systems.

embedded in the moving grasper, as shown in Fig. 5(b) and (c),
respectively.

The operational principle of the magnetic actuating system is
illustrated in Fig. 6(a), where the shading of the magnets indi-
cates their polarities; S1/S2 has opposite polarity of N1/N2
and M1/M2. The PM-trigger on the grasper (moving at a
constant speed v along a motorized chain) is initially locked
mechanically to prevent it from any rotation, as illustrated in
Figs. 5(c) and 6(b). Upon receiving a command from a vision
system [20] to make an orientation correction, the coil activa-
tion unlocks the PM-trigger allowing the device to rotate the
grasper (in θ direction) by the repulsive force (of two PM of
like-polarities) to a specified orientation (defined by the pair of
alignment PM of opposite polarities) within an often very short
cycle time while the grasper moves continuously. The only en-
ergy input required in this PM-based device is a finite pulse of
energy to unlock the trigger, which relocks by gravity.

In order to predict and verify the computed trajectory of
the grasper using DMP models, we compute the net repulsive
torques and simulate the motion of the rotating magnet M1 . The
coordinate of M1 is given by

xM1=




cos θ sin θ 0
−sin θ cos θ 0

0 0 1




xN 1+




vt−Du

R

0




−




0
R

0




(14)
where xN 1 and xM 1are the position vectors of the fixed magnet
N1 and the moving magnet M1, as defined in Fig. 6(c); and Du

is the location at which the trigger is unlocked. The dynamics
of the grasper motion θ(t) is given by

Iθ̈ + cθ̇ = Tz (15)

where I is the grasper inertia about the rotational axis; c is the
friction coefficient determined experimentally; and Tz is the net
torque acting on the rotating grasper by the permanent magnets.

The DMP parameters (derived using the method given in
Section II) for the PM are summarized in Table II. With the

TABLE II
PARAMETERS OF THE PM-BASED ORIENTATION CORRECTION MECHANISM

Fig. 7. Experimental setup and simulated trajectories θ(t). (a) Torque on the
locked grasper. (b) Net torque on the rotating grasper. (c) Trajectory of the
moving PM. (d) Comparison between simulated and video-recorded data.

magnetic flux density B calculated from the DMP models, the
torque can be computed using the Maxwell stress tensor (1b).

The computed torque and simulated trajectory of the moving
magnets are shown in Fig. 7. Fig. 7(a) shows the torques acting
on a locked grasper (due to the forces between N1 and M1 and
between N2 and M2). Initially, a large negative torque acts on
the grasper as M1 approaches N1 ; unlocking at this moment
would require overcoming a significantly large static friction.
However, as M2 moves into the range of N2 , the net torque (al-
gebraic sum of the two individual torques) acting on the grasper
gradually reduces, passes through zero, and becomes very pos-
itive. The optimal instant to unlock for a clockwise rotation is
when the net torque is zero, and thus, the static friction is a min-
imum. From Fig. 7(a), this location corresponds to t = tu or
Du = 27.3 mm. Fig. 7(b) and (c) shows the net driving torque
and trajectory of the moving grasper (which is unlocked at Du

during the travel). In Fig. 7(c), the two moving magnets M1
and M2 are marked as circles, which move with respect to the
fixed magnet N1 marked as asterisk. As compared to Fig. 7(d),
the simulated trajectory θ (t) agrees well with experimental
data obtained using a 3-charge-coupled device CCD digital
camera.

The offset Do used in the aforementioned simulation has
been based on an existing system that aims at completing a 180◦
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Fig. 8. Spherical motor. (a) CAD Model (SWM [18]). (b) Rotor inclination
in the XY Z frame.

rotation within a specified distance and time. With the DMP-
modeled field and torque, the offset Do can be optimized by
maximizing the mechanical power Tz θ̇ subject to constraints
(14) and (15). Using the Matlab optimization toolbox, the opti-
mal Do can be found to be 19.9 mm.

V. EXAMPLE 2: (SPHERICAL MOTOR CONTROL)

DMP models can be used to derive the forward and inverse
torque models for motion control of a spherical motor. The
forward model computes the torque, and along with the rotor
dynamics given in Appendix A, simulates the rotor motion. The
inverse model that computes an optimized set of currents to
provide the torque for tracking the desired trajectory, however,
must be controlled in real time. As will be shown, the DMP
models provide a means to derive a closed-form version of the
inverse model for real-time current optimization while retaining
the full-torque model to predict the motion of the spherical
motor.

Fig. 8 shows a computer-aided design (CAD) model of
a spherical wheel motor (SWM) [18], a modified design of
variable-reluctance spherical motors (VRSM) [9]. Unlike a
VRSM, where the rotor PMs and stator EMs are placed on
locations following the vertices of a regular polygon, the PMs
and EMs of an SWM are equally spaced on layers of circular
planes such that their magnetization axes pass radially through
the motor center. In addition, they are grouped in pairs; ev-
ery two pole pairs form a plane providing symmetrical forces
electromechanically.

A. Design Configuration of a Spherical Motor

In rotor coordinates (x, y, z), the magnetization axes of the
mr PM pole-pairs are given by (16)

ri = (−1)i−1 [cos φr cos θri cos φr sin θri sinφr ]
T (16)

where i = 1, 2, . . . ,mr ; and θri = (i − 1)θr . Similarly, the ms

EM pole pairs in the stator frame (XY Z) are given by (17). In
(17), φr and φs are the inclination angles between the magne-
tization axes of the PM and EM pole-pairs and the XY plane,
respectively,

sj = [cos φs cos θsj cos φs sin θsj sinφs ]
T (17)

where j = 1, 2,. . ., ms ; and θsi = (i − 1)θs . Unlike ms which
may be odd or even, mr, is always an even number.

The inclination of a continuously spinning rotor is commonly
described in terms of ZY Z Euler angles (ᾱ, β̄, γ) as it can be
easily visualized; see Fig. 8(b). This representation, however,
has singularities at α = 0, ±π making it difficult to compute
numerically. Thus, the XY Z Euler angles (α, β, γ) are used for
numerical computation with the coordinate transformation

α = − sin−1 (sin ᾱ sin β̄
)

(18a)

and

β = sin−1 (sin ᾱ cos β̄/ cos α
)
. (18b)

For a structure with linear magnetic properties, the magnetic
field of the spherical motor is obtained by summing over the
magnetic fields of the rotor PMs in stator frame (inertia frame)
with the coordinate transformation (19).

xs = LsrLrixri (19)

where xri represents the local coordinate frame of the ith PM
defined in Fig. 8(b); Lri describes the transformation from xri

to xr

Lri =




cos φr sin θri sinφr − cos θri sin φr

− sin φr sin θri cos φr − cos θri cos φr

0 cos θri sin θri




and Lsr from xr to xs ,Lsr , shown in the equation found at the
bottom of the page.

Equation (19) facilitates the torque calculation in stator frame.

B. Torque Calculation

The resultant torque of the spherical motor has the form

T = [TX TY TZ ]T = [K]u (20)

where

K
(
∈ R

3×ms
)

= [K1 · · · Kj · · · Kms
] (20a)

and

u = [J1 · · · Jj · · · Jms
]T (20b)

Lsr =




cos γ cos β cos γ sinα sinβ − cos γ cos α sin β + sin γ sinα

− sin γ cos β cos ᾱ cos φ − sin γ sin α sinβ sin γ cos α sin β + cos γ sin α

sinβ − sin α cos β cos α cos β



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Fig. 9. Closed-loop control of the spherical motor.

In (20a), the vector Kj

(
∈ R

3×1
)

characterizes the torque
contribution of the jth EM. In terms of rotor orientation

Kj=Lsj

(∮
EM

R×(Jj / |Jj |)×
[

2mr∑
i=1

Bi(α, β, γ)

]
r dr dθ d�

)

(21)
where Bi ∈ R

3×1 is the magnetic flux density of the ith PM; R
and r are the position vector and the radius of current conductor,
respectively; and Lsj is the coordinate transformation from xsj

(the local coordinate frame of the jth EM) to xs , which has the
same form as Lri but with the angles in (17).

C. Control System Analysis

As illustrated in Fig. 9, the forward model (20) simulates the
rotor motion for a given set of current inputs. The inverse model
computes an optimized set of currents providing the required
torque Td in order to track the desired trajectory xd in real
time.

1) Inverse Torque Model in Closed Form: The torque char-
acteristic vector (20) is orientation dependent, and the volume
integral (21) must be evaluated numerically in real time. In or-
der to reduce (20) to a tractable form so that an optimized set of
current inputs can be computed and implemented in real time,
it is desired to express the inverse model in closed form. It has
been shown in [9] that for a spherical motor with linear magnetic
properties, the torque generated by the interaction of one stator
EM pole pair with mr rotor PM pole pairs can be calculated
by summing up its individual interaction with mr rotor pole
pairs. Thus, the torque vector due to the interaction of one stator
polepair and mr rotor pole pairs can be evaluated as follows:

K̂j =


−

mr∑
k=1

{
f̂(ϕ)|ϕ=ϕj k

sj × rk

|sj × rk |

}
, if sj × rk �= 0

0, if sj × rk= 0
(22)

where f̂(ϕ) is a curve-fit function derived from (23) as a sepa-
ration angle ϕ between a PM pole-pair and an EM pole-pair, as
shown in Fig. 8(a); and

ϕjk = cos−1 (sj · rk ) / (|sj | |rk |) . (23)

The actual current input vector u is found by minimizing the
control input energy consumption

J =
1
2
uT [W]u (24)

subject to the desired torque constraint

Td =
[
K̂1 · · · K̂j · · · K̂ms

]
u

TABLE III
ROTOR PARAMETERS

where [W] ∈ Rms ×ms is a positive-definite weighting matrix.
Provided that the control currents are kept within limits, the
optimal u can be solved using Lagrange multipliers. The optimal
solution, in closed form, can be written as

u = [K]T
(
[K] [K]T

)−1
Td . (25)

In implementation, saturation limits are imposed on the con-
troller to ensure the current inputs are within the amplifier limi-
tations. The eventual stability of the system depends on whether
the spherical motor can generate the desired torque.

2) PD Controller: For completeness, the rotor dynamics are
given in Appendix A. Using the Lyapunov stability analysis, it
can be shown that the desired torque for a PD controller can
drive the spherical rotor from its initial state to a specified final
state

Td = [Kp ]x̃1(t) + [Kd ]x̃2(t) (26)

where x̃1(t) = qd − q(t) and x̃2(t) = q̇d − q̇(t) define
the tracking error and its derivative, respectively; and
q=[ᾱ β̄ γ]T is the orientation vector of Euler angles. In
applications, the closed-form inverse model (25) is used in real-
time control while the full torque model (20) is retained to
faithfully predict the motion of the spherical motor.

D. Simulation Results

We compare the simulation results against published experi-
mental data for two different designs; Design A (VRSM [9]) and
Design B (SWM [18]) in Fig. 8. In both designs, the coils are air
cored and other parameters used in the following simulations
are given in Table III. To examine the effect of the DMP models
on magnetic force prediction, we compute the torque exerted on
the EM pole pairs under the influence of the magnetic field due
to the rotor PMs using (20), where the magnetic flux density is
given by (9) along with the DMP models in Table I.

To validate the force computation, we simulate the torque
for Design A, since numerical solutions from ANSYS, a com-
mercial FE package, are available for comparison [9]. Both the
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Fig. 10. Torque computation using the DMP model. (a) Torque computation
between a PM- and an EM pole pairs. (b) Comparison of torque computation.

TABLE IV
COMPUTATIONAL TIME (SECONDS)

DMP-based and ANSYS models are simulated in 3-D space
with the same modeling parameters.

Three cases were simulated. In Case 1, we compute the torque
generated by the interaction between the EM pole-pair s1 and
the PM pole-pair r1 , as shown in Fig. 10(a), where the pole
locations are defined in (16) and (17). Case 2 is identical to Case
1 except that the interaction is between s1 and r2 . Case 3 was
performed to determine whether the principle of superposition
holds, which compares the superposition of the two individual
cases against the torque calculated with s1 and the combined
r1 and r2 . In each of these cases, the stator coils are given a
current of 4 A. As shown in Fig. 10(b), the torques computed
using the DMP models as a function of rotor position agree well
with the ANSYS results. ANSYS took about 12 min to compute
Cases 1 and 2, and 20 min for Case 3 using a Windows-based
PC (dual-core processor 2.21 GHz CPU and 1 GB memory),
while the DMP-based models require less than 17 s to compute
each of the cases, as compared in Table IV.

The time needed to calculate the magnetic torque can be fur-
ther reduced by modeling the multilayer EM as an equivalent
single-layer EM or PM [21], where the DMP method provides
an essential basis. In the FE method, the free space must be
bounded; particularly in 3-D, the computation cost increases
drastically with the size of the free space. This, along the dis-
tortion of automatically generated FE meshes, contributes to
some discrepancy (of less than 5% difference) between the two
models. The mesh distortion could be the cause of the FE error
(offset) when the separation angle is zero.

Once the magnetic field is characterized, the torque can be
computed from (20). Fig. 11 compares the DMP-modeled results
against those obtained using ANSYS for the torque between a
PM pole pair and an EM pole pair of Design B shown in Fig. 8(a).
In addition to the need for a relatively large free space to enclose
the magnetic field, ANSYS depends significantly on the mesh
resolution for its accuracy. Unlike ANSYS results, where few
data are available, the DMP-based torque model is smooth and

Fig. 11. Torque between a PM- and an EM pole pair.

Fig. 12. Step response of spherical motor (Design B).

TABLE V
MAXIMUM PERCENTAGE ERROR

can be easily curve-fitted. With 7th order polynomial curve fit,
the average error is less than 0.02%.

We simulate, as an illustration, the closed-loop control system
using the DMP-modeled torque. The measurement system is
assumed to have no dynamics. For a specified Td , the optimized
set of current inputs is given by (25), where f̂(ϕ) is given in
Fig. 11. With the following PD gains

[Kp ] =




500 0 0
0 300 0
0 0 500


 and [Kd ] = 50I

where I is 3× 3 identity matrix, results for a step change in rotor
orientation from its initial upright position (α = β = γ = 0◦) to
a final state (α = 0◦, β = 10◦ and γ = 60◦) are given in Fig. 12.
To examine the effect of the curve-fit function based on DMP
models, we compare the full model (21) and the simplified
closed-form solution (22) in modeling the forward torque. As
shown in Fig. 12 and Table V, the comparisons show excellent
agreement with less than 10% error in both the computed torque
and the simulated motions.

We also investigate the effect of pole-pair configurations on
the closed-loop control by comparing the current inputs, torques,
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Fig. 13. Comparison of transient responses and torques.

Fig. 14. Comparison of current inputs.

and transient responses of the two designs (Table III). The PD
gains are set at [Kp ] = 550[I], 3000[I], and [Kd ] = 30[I],
140[I] for Designs A and B, respectively. Fig. 13 compares the
transient responses to a step change in rotor orientation; the
performance parameters and the required energy defined in (27)
are summarized in Table VI.

H =
∑ms

i=1

t∫
t0

Ii(t)Vi(t) dt (27)

where Vi and Ii are the voltage and the current, respectively,
flowing through the ith pole pair. The comparison shows that
Design B is superior to Design A in term of overshoot, response
time, and current-to-torque ratio. Since Design B has a larger
number of distributed coils and a better arrangement of coils and
PMs, each coil demands a smaller input current, as compared
in Fig. 14, which graphs the applied currents. This results in a
much lower heat dissipation during transient provided that the
final position can be maintained mechanically.

TABLE VI
TRANSIENT RESPONSE (φ) COMPARISON

Fig. 15. Schematics illustrating inclination measurement.

VI. EXAMPLE 3: (INCLINATION SENSOR)

Fig. 15 illustrates the use of DMP models to determine the
orientation (α, β) of an inclined shaft by measuring the B-field
of a moving cylindrical PM. Equation (9) provides a means to
determine the unknown inclination q(α, β) from the magnetic
flux density B, which can be measured using low-cost sensors
such as the Hall effect sensor. The inverse problem can be solved
from BX± and BY ± measured using two sensor pairs with
location given in Fig. 15.

A common approach to reduce (9) for a real-time application
is to compute the incremental change in orientation

q̂ = qk+1 − qk (28)

such that qk+1at the (k+1)th time step is computed from its
previous step qk based on the perturbation model of (9)

[A]q̂ = b (29)

where

q̂ = [α̂ β̂ γ̂]T ; b = [B(qk+1) − B(qk )] (30a,b)

and

[A] = [∂B/∂α ∂B/∂β ∂B/∂γ]q=qk
∈ R

j×3 . (30c)

For a sensor-located P

∂B
∂q

= −µo

4π

k∑
j=0

mj

nk∑
i=1

∂

∂q

(
Rji+

|Rji+ |3
− Rji+

|Rji+ |3

)
(31)

where q denotes α, β, or γ; and Rji± = P − Pji±. The partial
derivative in (31) is given by

∂

∂q

(
Rji±

|Rji±|3

)
= − 1

|Rji±|3
∂Pji±

∂q

+
(

3 [Rji±]T
∂Pji±

∂q

)
Rji±
|Rji±|

(31a)
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Fig. 16. Exact solutions and simulated measurements. (a) Analytical solution.
(b) Simulated BX ± and BY ±.

Fig. 17. Simulated circular motion and modeling errors. (a) α and β trajectory.
(b) Modeling errors.

where

∂Pj i±/∂q = ∇ [Γ(q)pj i±] (32b)

and ∇ = ∂/∂α + ∂/∂β + ∂/∂γ. Hence, the orientation can be
updated using (32)

qk+1 = qk +
(
[A]T [A]

)−1
[A]T b. (32)

Equation (32) provides the inverse solution of the field-based
sensor system for incremental orientation measurement in real-
time computation. Appendix B gives the Jacobian matrix [A]
for a 2-DOF orientation (α, β) measurement.

Fig. 16(a) shows the simulated magnetic field BY at point
P(0, S, Zs) using (9) over the (α, β) range of ±20◦, for which
the simulated measurements of constant BX± and BY ± con-
tours (in Tesla) are plotted in Fig. 16(b). Fig. 17(a) and (b)
shows the circular trajectory of the shaft inclined at 10◦ from
the Z-axis, and the modeled measurement errors (in radians),
respectively.

VII. CONCLUSION

We have introduced the distributed multipole (DMP) model-
ing method for design and control of PM-based devices. The
DMP model extends the concept of a magnetic dipole model to
account for the shape and magnetization of the physical mag-
net. Derived in closed form, we show how the DMP-models
can be efficiently used to characterize the magnetic fields for
computing magnetic forces and torques. The DMP method has
been validated by comparing computed results against published
experimental and numerical data. The simplicity of the DMP-

based solutions along with precise (and yet intuitive) magnetic
fields has been demonstrated with three practical examples of
torque modeling and motion control simulation.

APPENDIX A

EQUATIONS OF ROTOR MOTION

The motion of SWM can be characterized in term of ZY Z
Euler angles (ᾱ, β̄, γ). For the mechanical structure, the equa-
tion of rotor motion derived using the Lagrangian formulation
has the following form

[M] q̈ + C(q̇,q) = Q (A1)

where

[M] =




(Ia − It) cos2 β̄ + It 0 Ia cos β̄

0 It 0

Ia cos β̄ 0 Ia


 (A2)

C(q̇,q) =




2(It − Ia) sin β̄ cos β̄ ˙̄α ˙̄β − Ia sin β̄ ˙̄βγ̇

(Ia − It) sin β̄ cos β̄ ˙̄α2 + Ia sin β̄ ˙̄α ˙̄β

−Ia sin β̄ ˙̄α ˙̄β


 (A3)

and

Q =



−T1 sin β̄ cos φ + T2 sin β̄ sin γ + T3 cos β̄

mgh sin β̄ + T1 sin γ + T2 cos γ

T3


 (A4)

where q = [ᾱ β̄ γ]T ; Ia = Izz ; It = Ixx = Iyy ; and m is the
mass of the rotor. In (A3), h accounts for the off-center of the
mass; and Q represents the contributions of the applied torque to
the generalized moments. The applied torque in the rotor frame
is expressed by the stator frame as

T = T1 î + T2 ĵ + T3 k̂ (A5)

where

T1 = TX (cos ᾱ cos β̄ cos γ − sin ᾱ sin γ)

+ TY (sin ᾱ cos β̄ sin γ + cos ᾱ sin γ) − TZ sin β̄ cos γ

T2 = TX (− cos ᾱ cos β̄ sin γ − sin ᾱ cos γ)

+ TY (− sin ᾱ cos β̄ sin γ + cos ᾱ cos γ) + TZ sin β̄ sin γ

T3 = TX cos ᾱ sin β̄ + TY sin ᾱ sin β̄ + TZ cos β̄.

APPENDIX B

JACOBIAN MATRIX OF MAGNETIC FLUX DENSITY

The Jacobian matrix of the magnetic flux density B is given
by (B1)

[A] =

[
∂BX /∂α ∂BX /∂β

∂BY /∂α ∂BY /∂β

]
=

m

D5/2

[
NX α NX β

NY α NY β

]
(B1)

where

D = 2(X2
1 + Y 2

1 + Z2
1 )
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X1 = X − xCβ − b−Sβ

Y1 = Y − a1

Z1 = Z − xSβ + b−Cβ

a1 = yCα + zSα , b± = ySα ± zCα

and the subscripts α and β of C and S denote cosine and sine
of α and β, respectively and where

NX α = a1DSβ +6X1 {− (a1Sβ +zCα ) X+b−Y +a1Cβ Z}
NX β = D[b−Cβ − xSβ ]

+ 6X1 [(xSβ − b−Cβ ) X − (b−Sβ + xCβ ) Z]

NY α = − Db+ + 6Y1 [− (a1Sβ + zCα ) X + b−Y + a1Cβ Z]

and

NY β = 2−3/5D2 (−b−Cβ + xSβ )

+ 6Y1 [(Cβ b− − xSβ ) X + (Sβ b− + xCβ ) Z] .
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